Boolean Unateness Testing with $\widetilde{O}(n^{3/4})$ Adaptive Queries

نویسندگان

  • Xi Chen
  • Erik Waingarten
  • Jinyu Xie
چکیده

We give an adaptive algorithm which tests whether an unknown Boolean function f : {0, 1} → {0, 1} is unate, i.e. every variable of f is either non-decreasing or non-increasing, or ε-far from unate with one-sided error using Õ(n/ε) queries. This improves on the best adaptive O(n/ε)-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri [BCP17b] when 1/ε n. Combined with the Ω̃(n)-query lower bound for non-adaptive algorithms with one-sided error of [CWX17, BCP17a], we conclude that adaptivity helps for the testing of unateness with one-sided error. A crucial component of our algorithm is a new subroutine for finding bi-chromatic edges in the Boolean hypercube called adaptive edge search. ∗Columbia University, email: [email protected]. †Columbia University, email: [email protected]. ‡Columbia University, email: [email protected] ar X iv :1 70 8. 05 78 6v 1 [ cs .C C ] 1 9 A ug 2 01 7

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An $\widetilde{O}(n)$ Queries Adaptive Tester for Unateness

We present an adaptive tester for the unateness property of Boolean functions. Given a function f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far from being unate.

متن کامل

A $\widetilde{O}(n)$ Non-Adaptive Tester for Unateness

Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, O(n log(n)/ε)-query tester for unateness of Boolean functions f : {0, 1}n 7→ {0, 1}. In this note, we describe a simple non-adaptive, O(n log(n/ε)/ε) -query tester for unateness for real-valued functions over the hypercube.

متن کامل

Boolean Unateness Testing with Õ(n3/4) Adaptive Queries

We give an adaptive algorithm that tests whether an unknown Boolean function f : {0, 1}n →{0, 1} is unate (i.e. every variable of f is either non-decreasing or non-increasing) or -far from unate with one-sided error and ̃ O(n/ ) many queries. This improves on the best adaptive O(n/ )-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri [1] when 1/ n. Combined with...

متن کامل

Testing Unateness of Real-Valued Functions

We give a unateness tester for functions of the form f : [n] → R, where n, d ∈ N and R ⊆ R with query complexity O( log(max(d,n)) ). Previously known unateness testers work only for Boolean functions over the domain {0, 1}. We show that every unateness tester for realvalued functions over hypergrid has query complexity Ω(min{d, |R|}). Consequently, our tester is nearly optimal for real-valued f...

متن کامل

An ~O(n) Queries Adaptive Tester for Unateness

We present an adaptive tester for the unateness property of Boolean functions. Given a function f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far from being unate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017